Lack of allosterically controlled intramolecular transfer of nitric oxide from the heme to cysteine in the beta subunit of hemoglobin.
نویسندگان
چکیده
The SNO-Hb hypothesis holds that heme-bound nitric oxide (NO) present in the beta subunits of T-state hemoglobin (Hb) will be transferred to the beta-93 cysteine upon conversion to R-state Hb, thereby forming SNO-Hb. A deficiency in the ability of Hb to facilitate this intramolecular transfer has recently been purported to play a role in pulmonary hypertension and sickle cell disease. We prepared deoxygenated Hb samples with small amounts of heme-bound NO and then oxygenated the samples. Electron paramagnetic resonance (EPR) spectroscopy was used to (1) determine the concentration of iron nitrosyl Hb (Fe-NO Hb), (2) show that the NO is evenly distributed among alpha and beta subunits, and (3) show that the Hb undergoes a change in its quaternary state (T to R) upon oxygenation. We did not observe a decrease in the concentration of Fe-NO Hb on oxygenation, which is inconsistent with the prediction of the SNO-Hb hypothesis.
منابع مشابه
Measurements of nitric oxide on the heme iron and beta-93 thiol of human hemoglobin during cycles of oxygenation and deoxygenation.
Nitric oxide has been proposed to be transported by hemoglobin as a third respiratory gas and to elicit vasodilation by an oxygen-linked (allosteric) mechanism. For hemoglobin to transport nitric oxide bioactivity it must capture nitric oxide as iron nitrosyl hemoglobin rather than destroy it by dioxygenation. Once bound to the heme iron, nitric oxide has been reported to migrate reversibly fro...
متن کاملLack of allosterically controlled intramolecular transfer of nitric oxide from the heme to cysteine in the subunit of hemoglobin
The SNO-Hb hypothesis holds that hemebound nitric oxide (NO) present in the subunits of T-state hemoglobin (Hb) will be transferred to the -93 cysteine upon conversion to R-state Hb, thereby forming SNO-Hb. A deficiency in the ability of Hb to facilitate this intramolecular transfer has recently been purported to play a role in pulmonary hypertension and sickle cell disease. We prepared deoxyge...
متن کاملUnraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics.
The ability of oxyhemoglobin to inhibit nitric oxide (NO)-dependent activation of soluble guanylate cyclase and vasodilation provided some of the earliest experimental evidence that NO was the endothelium-derived relaxing factor (EDRF). The chemical behavior of this dioxygenation reaction, producing nearly diffusion limited and irreversible NO scavenging, presents a major paradox in vascular bi...
متن کاملRoutes to S-nitroso-hemoglobin formation with heme redox and preferential reactivity in the beta subunits.
Previous studies of the interactions of NO with human hemoglobin have implied the predominance of reaction channels that alternatively eliminate NO by converting it to nitrate, or tightly complex it on the alpha subunit ferrous hemes. Both channels could effectively quench NO bioactivity. More recent work has raised the idea that NO groups can efficiently transfer from the hemes to cysteine thi...
متن کاملATVB In Focus Nitric Oxide Redux
The ability of oxyhemoglobin to inhibit nitric oxide (NO)-dependent activation of soluble guanylate cyclase and vasodilation provided some of the earliest experimental evidence that NO was the endothelium-derived relaxing factor (EDRF). The chemical behavior of this dioxygenation reaction, producing nearly diffusion limited and irreversible NO scavenging, presents a major paradox in vascular bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 107 7 شماره
صفحات -
تاریخ انتشار 2006